EMAIL: PASSWORD:
Front Office
UPT. PERPUSTAKAAN
Institut Teknologi Sepuluh Nopember Surabaya


Kampus ITS Sukolilo - Surabaya 60111

Phone : 031-5921733 , 5923623
Fax : 031-5937774
E-mail : libits@its.ac.id
Website : http://library.its.ac.id

Support (Customer Service) :
timit_perpus@its.ac.id




Welcome..guys!

Have a problem with your access?
Please, contact our technical support below:
LIVE SUPPORT


Moh. Fandika Aqsa


Davi Wahyuni


Tondo Indra Nyata


Anis Wulandari


Ansi Aflacha




ITS » Master Theses » Teknik Elektro S2
Posted by tondoindra@gmail.com at 01/07/2013 11:31:27  •  1729 Views


PENCARIAN FAKTOR JENIS UKM MENGGUNAKAN METODE FUZZY ASSOCIATION RULE

Author :
KHILMI, MUSTAFID ( 2209206703 )




ABSTRAK

Pengolahan data secara cepat efisien dan efektif sangat diperlukan oleh setiap instansi guna mendapatkan informasi dan mendukung pengambilan keputusan. Sebagai salah satu data penting Departemen Perindustrian dan Perdagangan database Usaha Kecil Menengah UKM yang terkumpul dan tersimpan terus berkenibang dan bertambah banyak Jika data1ersebut dibiarkan maka akan menjadi kuburan data yang tidak berarti dan tujuan pembangunan database UKM menjadi tidak tercapai. Untuk mengatasi masalah tersebut telah ditemukan beragam struktur penyimpanan data yang berusaha untuk memperbaiki efisiensi pengolahan dan penggalian data terutama dalam membangun sebuah pola hubungan antar data dan mencari frequent itemset dalam sebuah database. Salah satu fungsionalitas dalam penambangan data adalah analisis asosiasi association analysis 0. Tujuan utamanya adalah menggali kaidah asosiasi diantara item-item dalam suatu basis data. Untuk menunjang penggalian aturan assosiatif terse but maka dalam penelitian ini digunakan pendekatan paradigma apriori6 dab juga Fuzzy Association Rule dengan harapan dari pola yang terbangun akan ditemukan aturan asosiasif dalam kumpulan database UKM dan pada akhimya nanti akan dicari faktor-faktor yang seperti apa yang bisa menjadi penentu bahwa UKM tersebut bisa dikatakan UKM Tangguh dan UKM Mandiri.


ABSTRACT

Processing data quickly efficiently and effectively required by each institution in order to obtain informat.ipn and support decision-making. As one of the important data the Ministry of Industry and Trade a database of Small Medium Enterprises SMEs were collected and stored continues to grow and multiply if the data is allowed it would be a grave that does not mean the data and databases into SME development goals not achieved. To overcome this problem has found a variety of data storage structures that seek to improve the efficiency of processing and data mining particularly in establishing the pattern of relationships between the data and look for frequent itemset in the database. One of the functions of data mining is association analysis association analysis 10. The main objective is to explore the rules of the relationship between items in the database. To support associative rule mining the approach used in the research paradigm of a 6 also apply a priori Fuzzy Association Rule in the hope___ that the rules asosiasifwake patterns will be found in the collection of databases SMEs and in the end will look to factors such as what can be determinant of UKM can say UKM Tangguh and UKM Independent.



KeywordsAssociation rule, Apriori, frequent pattern mining, frequent itemset,Fuzzy Association Rule.
 
Subject:  none
Contributor
  1. Dr.Ir. Achmad Affandi., DEA
  2. Diah Puspito W., ST., M.Sc
Date Create: 01/07/2013
Type: Text
Format: PDF
Language: Indonesian
Identifier: ITS-Master-22003100000229
Collection ID: 22003100000229
Call Number: RTE 005.74 Khi p


Source
Master Theses Of Electrical Engineering, RTE 005.74 Khi p,2013

Coverage
ITS Community




[ Download - Open Access ]

  1.  ITS-Master-25848-2209206703_conclusion.pdf - 177 KB




 Similar Document...




! ATTENTION !

To facilitate the activation process, please fill out the member application form correctly and completely

Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently

POLLING

Bagaimana pendapat Anda tentang layanan repository kami ?

Bagus Sekali
Baik
Biasa
Jelek
Mengecewakan





You are connected from 54.224.187.45
using CCBot/2.0 (http://commoncrawl.org/faq/)



Copyright © ITS Library 2006 - 2017 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan