Front Office
Institut Teknologi Sepuluh Nopember Surabaya

Kampus ITS Sukolilo - Surabaya 60111

Phone : 031-5921733 , 5923623
Fax : 031-5937774
E-mail :
Website :

Support (Customer Service) :


Have a problem with your access?
Please, contact our technical support below:

Davi Wahyuni

Tondo Indra Nyata

Anis Wulandari

Ansi Aflacha

ITS » Master Theses » Statistika -- Matematika Industri
Posted by anis at 02/01/2007 12:06:22  •  12780 Views

The Factors That Influence Farmers Capabilities Of Returning Farm Credit

Author :


Kredit usahatani merupakan dana bantuan pemerintah untuk meningkatkan taraf hidup petani di Indonesia manun sekarang ini sebagian besar petani tidak dapat mengembalikan kredit sehingga terjadi kredit macet. Penelitian ini akan melihat faktor-faktor yang mempengaruhi kemampuan petani untuk mengembalikan kredit. Alat analisis yang digunakan adalah Analisis Regresi Komponen Utama. Dari hasil analisis diperoleh Faktor Pertama terdiri dari luas lahan XI Urea X5 TSP X6 KCL X7 dan pestisida X8 dimana faktor ini mampu menjelaskan 397 keragaman total. Faktor Kedua terdiri dari Umur petani X2 Pengalaman bertani X3 dan jumlah tanggungan keluarga X4 mampu menjelaskan 209 keragaman total. Faktor Ketiga terdiri dari Status pemilikan lahan X9 mampu menjelaskan 111 dari keragaman total. Faktor Keempat terdiri Tingkat Pendidikan X10 mampu menjelaskan 172 dari keragaman total. Persamaan regresi dari keempat faktor tersebut adalah Y 2612053-732747Wi363591W2210564W3189300W4 Dalam hal kemampuan petani untuk mengembalikan kredit usahatani minimal petani pemilik harus mengelolah lahan seluas 11 ha dan petani penyewa 172 ha untuk dapat meminjam kredit sebesar Rp. 1.000.000-


The farm credit is assistence fund to increase standard of living the Indonesian farmers. But morer of the farmers are not be able to pay the credit. This research is intend to find factors influence farmer capabilities of returning farm credit. The analysis method is Principal Component Regression analysis. The result of analysis are The First Factor are Wide of area XI Urea X5 TSP X6 KCL XT and Pesticide X8 determine to 397 total variabilities. The Second Factor are Age farmer X2 Farmer experience X3 and number of burden X4 determine to 209 total variabilities. The Third Factor is ownship status X9 determine to 111 total variabilities. The Fourth Factor is Education level XI0 determine to 172 total variabilities. The Regression Model from fourth factor is Y 2612053-732747Wi363591W2210564W3189300W4 The capabilities farmers to pay of farm credit is depend on minimal arearequarement 11 hectare if owner area but if he rent farmers must be 172 hectare for pay in installmemnt for one million credit

KeywordsKredit usahatani;dana bantuan pemerintah;Analisis
Subject:  Kredit pertanian
  1. Dra. Farida Agustini W, MS.
    Drs. Soehardjoepri, M.Si.
Date Create: 02/01/2007
Type: Text
Format: pdf ; 43 pages
Language: Indonesian
Identifier: ITS-Master-31000020154444
Collection ID: 31000020154444
Call Number: 519.536 Mok f

Theses Industry Mathematic RT 519.536 Mok f, 2001

ITS Community

Copyright @2001 by ITS Library. This publication is protected by copyright and permission should be obtained from the ITS Library prior to any prohibited reproduction, storage in a retrievel system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to ITS Library

[ Download - Summary ]


 Similar Document...

     No similar subject found !


To facilitate the activation process, please fill out the member application form correctly and completely

Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently


Bagaimana pendapat Anda tentang layanan repository kami ?

Bagus Sekali

You are connected from
using CCBot/2.0 (

Copyright © ITS Library 2006 - 2022 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan