EMAIL: PASSWORD:
Front Office
UPT. PERPUSTAKAAN
Institut Teknologi Sepuluh Nopember Surabaya


Kampus ITS Sukolilo - Surabaya 60111

Phone : 031-5921733 , 5923623
Fax : 031-5937774
E-mail : libits@its.ac.id
Website : http://library.its.ac.id

Support (Customer Service) :
timit_perpus@its.ac.id




Welcome..guys!

Have a problem with your access?
Please, contact our technical support below:
LIVE SUPPORT


Moh. Fandika Aqsa


Davi Wahyuni


Tondo Indra Nyata


Anis Wulandari


Ansi Aflacha




ITS » Master Theses » Matematika - S2
Posted by ida at 12/08/2008 16:58:17  •  10800 Views


PENGEMBANGAN SUPER EDGE-MAGIC GRAPH MODIFIKASI DARI SUPER EDGE MAGIC GRAPH YANG SUDAH ADA

THE EXPANDING AND THE ANALISYS OF MODIFICATION SUPER EDGE-MAGIC GRAPH FROM SOME OLD ONES

Author :
Hanum, Zul Farida 




ABSTRAK

Pelabelan suatu graph adalah suatu pemetaan dari himpunan elemen graph vertex edge atau vertex dan edget terhadap bilangan bulat positif.. Salah satu jenis pelabelan graph adalah edge-magic total labeling adalah pelabelan graph yang mempunyai sifat penjumlahan dari semua label yang berhubungan dengan edge tersebut menghasilkan suatu konstanta dan berlaku untuk edge yang lain pada graph tersebut. Sedangkan super edge-magic total labeling hampir sama dengan edge magic total labeling tetapi label dari vertex adalah bilangan integer positif terkecil yaitu 1 2 ... p. Pada penelitian ini dikaji modifikasi super edge magic graph dari super edge magic graph yang sudah ada dengan cara menggabungkan dua atau lebih super edge magic graph yang sudah ada yaitu Pn Cn dan K1 dengan operasi penggabungan yaitu union danatau . Selain itu juga ditentukan cara pelabelan serta mencari magic constant bilangan ajaib dari super edge magic graph yang baru. Hasil dari penelitian adalah super edge magic graph baru yaitu 2 1 1 P m 1 K K m dan 2 1 1 P n 2 K K n untuk m ganjil dan n genap serta graph 3 1 C P K n . Penelitian ini menambah jenis baru dari super edge magic graph.


ABSTRACT

A labeling of a graph is any mapping that sends some sets of graph element vertex edge or vertex and edge to a set of positive integer. One of the type of graph labeling is edge-magic total labeling that the sum of all lables associated with an edge is a constant and it is also defined for the other edge in that graph. Super edge-magic total labeling are defined similarly but the lable of vertex is a set of the smallest positive integer 1 2 ... p. This research is observed how to expand super edge-magic graph from the old ones by gathering two or more super edge-magic graph previous they are Pn Cn and K1 with operation on graph are union and or . Further it is shown how to labeling graph and compute magic constant of new super edge-magic graph. The result of this research is some of super edge-magic graph they are 2 1 1 P m 1 K K m and 2 1 1 P n 2 K K n for m is odd and n is even also another new super edge-magic graph which is 3 1 C P K n for n 1 2 3 4. This research contributes new type of super edge-magic graph



Keywordsedge magic graph, magic constant (bilangan ajaib), super edge magic graph
 
Subject:  Metode Grafis
Contributor
  1. Drs. Chairul Imron, MI.Komp.
Date Create: 12/08/2008
Type: Text
Format: pdf
Language: Indonesian
Identifier: ITS-Master-3100007030415
Collection ID: 3100007030415
Call Number: RTMa 518.23 Han p


Source
Theses, MASTER PROGRAMME DEPARTMENT OF MATHEMATICS FACULTY OF MATHEMATICS AND NATURAL SCIENCES RTMa 518.23 Han p

Coverage
ITS Community Only

Rights
Copyright @2007 by ITS Library. This publication is protected by copyright and permission should be obtained from the ITS Library prior to any prohibited reproduction, storage in a retrievel system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to ITS Library




[ Download - Summary ]

ITS-Master-3100007030415-1958.pdf




 Similar Document...




! ATTENTION !

To facilitate the activation process, please fill out the member application form correctly and completely

Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently

POLLING

Bagaimana pendapat Anda tentang layanan repository kami ?

Bagus Sekali
Baik
Biasa
Jelek
Mengecewakan





You are connected from 35.172.100.232
using CCBot/2.0 (https://commoncrawl.org/faq/)



Copyright © ITS Library 2006 - 2019 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan