EMAIL: PASSWORD:
Front Office
UPT. PERPUSTAKAAN
Institut Teknologi Sepuluh Nopember Surabaya


Kampus ITS Sukolilo - Surabaya 60111

Phone : 031-5921733 , 5923623
Fax : 031-5937774
E-mail : libits@its.ac.id
Website : http://library.its.ac.id

Support (Customer Service) :
timit_perpus@its.ac.id




Welcome..guys!

Have a problem with your access?
Please, contact our technical support below:
LIVE SUPPORT


Moh. Fandika Aqsa


Davi Wahyuni


Tondo Indra Nyata


Anis Wulandari


Ansi Aflacha




ITS » Master Theses » Manajemen & Rekayasa Sumber Air S2
Posted by ansi@its.ac.id at 04/01/2012 15:11:48  •  1822 Views


PEMODELAN PREDIKSI DEBIT HARIAN YANG MASUK BENDUNGAN SENGGURUH

PREDICTION MODEL OF DAILY INFLOW SENGGURUH DAM

Author :
MAHMUDI ( 3107205715 )




ABSTRAK

Debit harian yang masuk Bendungan Sengguruh sangat penting dalam pengelolaanya dimasa sekarang maupun akan datang salah satu sisi penting dari potensi debit tersebut adalah untuk Pembangkit Listrik Tenaga Air PLTA sedangkan manfaat Bendungan Sengguruh untuk menjaga umur ekonomis Waduk Sutami. Kondisi berubahnya tata guna lahan ditambah dengan dampak perubahan iklim global sangat mempengaruhi kondisi hidrologi DAS Brantas hulu sehingga mempengaruhi kuantitas potensi debit tersebut. Mengingat pentingnya debit harian yang masuk Bendungan Sengguruh dimasa mendatang diperlukan suatu pemodelan prediksi debit harian yang masuk Bendungan Sengguruh yang mampu memprediksikan perilaku dari suatu rangkaian data debit. Perbedaan time lage Tn atau variabilitas data curah hujan harian mungkin akan mempengaruhi kinerja model prediksi debit harian yang dihasilkan. Penelitian diawali dengan studi literatur dan mengumpulkan data-data curah hujan harian dibeberapa stasiun pengamatan curah hujan harian di DAS Brantas hulu dalam hal ini stasiun Bendungan Sengguruh. Data-data yang diperoleh digunakan sebagai input dalam membangun model prediksi. Pemilihan variabel input yang berpengaruh terhadap variabel output dilakukan menggunakan analisa korelasi. Metode peramalan menggunakan data driven model yaitu M5 Model Tree dimana proses pembelajarannya learning menggunakan program bantu Weka Knowledge Explore. Uji Kelayakan performa model melalui uji verifikasi atau test split. Hasil analisa M5 Model Tree yang terpilih untuk prediksi debit harian yang masuk Bendungan Sengguruh saat pembelajaran model terpilih menghasilkan nilai performa terbaik nilai RMSE Root Mean Square Error 10.55. Saat verifikasi model 3 P_BR nilai RMSE 11.98 dengan jumlah persamaan regresi 6 pruning 2.


ABSTRACT

Daily discharge that enters Sengguruh Dam is very essential for the present and future management and one of an important aspect of the discharge is for Hydro Electric Power Plant HEPP PLTA while the benefit of the Sengguruh Dam is to maintain the economic life time of Sutami Reservoir. The change of land use condition and the impact of global climate change greatly affect hidrological condition of Brantas Upper Reaches Watershed and in turn affects the quantity of the discharge potency. Considering the importance daily discharge inflow of Sengguruh Dam it requires prediction model of daily inflow Sengguruh Dam that is capable of predicting behavior of a discharge date series. Difference in the time lage Tn or variability of the daily rainfall data maybe assumed to influence the performance of the resulted daily discharge prediction model. This research is performed by refering to the literatures and by compling daily rainfall data from a number of rain gauge stations on Brantas Upper Reaches in this case the station of Sengguruh Dam. The obtainable is used as input in developing predection model. Selection of input variable that affect output variable is done by the use of correlation analysis. Forecast method is using data driven model namely MS Model Tree of which learing proses uses aid program Weka Knowledge Explore. Feasibility test of model performance by verification test or test split. Analysis result of MS Model Tree predection of daily discharge entering Sengguruh Dam at the time of selected model learning that produces the best model performance value value RMSE Root Mean Square Error 10.55. At the time of model prediction verification model 3 P_BR value of RMSE 11.981 and total regression equation 6 pruning 2.



KeywordsModel Prediksi; RMSE; M5 Model Tree
 
Subject:  Bendungan
Contributor
  1. Ir. Soetoyo M.Sc.
  2. Dr. Ir. Edijatno
Date Create: 22/07/2011
Type: Text
Format: pdf
Language: Indonesian
Identifier: ITS-Master-3100011044733
Collection ID: 3100011044733
Call Number: RTS 519.536 Mah p


Source
Master Thesis, Civil Engineering, RTS 519.536 Mah p, 2012

Coverage
ITS Community

Rights
Copyright @2011 by ITS Library. This publication is protected by copyright and per obtained from the ITS Library prior to any prohibited reproduction, storage in a re transmission in any form or by any means, electronic, mechanical, photocopying, reco For information regarding permission(s), write to ITS Library




[ Download - Open Access ]

  1.  ITS-Master-17056-Abstract_id-pdf.pdf - 428 KB
  2.  ITS-Master-17056-Abstract_en-pdf.pdf - 427 KB
  3.  ITS-Master-17056-Conclusion-pdf.pdf - 48 KB
  4.  ITS-Master-17056-Paper-1pdf.pdf - 1821 KB
  5.  ITS-Master-17056-Paper-2pdf.pdf - 1927 KB




 Similar Document...




! ATTENTION !

To facilitate the activation process, please fill out the member application form correctly and completely

Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently

POLLING

Bagaimana pendapat Anda tentang layanan repository kami ?

Bagus Sekali
Baik
Biasa
Jelek
Mengecewakan





You are connected from 54.196.47.128
using CCBot/2.0 (http://commoncrawl.org/faq/)



Copyright © ITS Library 2006 - 2017 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan