EMAIL: PASSWORD:
Front Office
UPT. PERPUSTAKAAN
Institut Teknologi Sepuluh Nopember Surabaya


Kampus ITS Sukolilo - Surabaya 60111

Phone : 031-5921733 , 5923623
Fax : 031-5937774
E-mail : libits@its.ac.id
Website : http://library.its.ac.id

Support (Customer Service) :
timit_perpus@its.ac.id




Welcome..guys!

Have a problem with your access?
Please, contact our technical support below:
LIVE SUPPORT


Moh. Fandika Aqsa


Davi Wahyuni


Tondo Indra Nyata


Anis Wulandari


Ansi Aflacha




ITS » Undergraduate Theses » Teknik Fisika S1
Posted by aguss at 18/12/2008 06:57:18  •  10503 Views


PENINGKATAN PERFORMANSI SISTEM MONITORING BERBASIS GRAFIK KONTROL SECARA ONLINE DENGAN ADAPTIVE FUZZY MEMBERSHIP FUNCTION

IMPROVING PERFORMANCE OF ONLINE MONITORING SYSTEM BASED ON CONTROL CHART WITH ADAPTIVE FUZZY MEMBERSHIP FUNCTION

Author :
FEMIANA, EARLY 




ABSTRAK

Kualitas produk sangatlah bergantung pada kualitas proses produksi. Sehingga performansi proses produksi harus dimonitoring secara ketat. Statistical Process Control SPC adalah suatu teknik yang dapat digunakan untuk melakukan evaluasi terhadap performansi suatu proses yang memanfaatkan metode statistik untuk menganalisa mengontrol dan mempengaruhi perbaikan performansi proses. Penggunaan gabungan dua grafik kontrol seperti grafik kontrol individual dengan grafik kontrol cumulatif of sum CUSUM dapat meningkatkan performansi metode statistical process control SPC dalam menganalisis kualitas suatu proses. Pada penelitian ini dibuat sebuah algoritma yang dapat digunakan sebagai alat bantu untuk mengambil sebuah keputusan SPC tentang status proses dengan menggunakan fuzzy intrference system. Untuk mendeteksi karakterisitik dari plant tersebut harus dibuat sebuah algoritma fuzzy yang dapat diaplikasikan pada berbagai macam variabel proses tekanantemperatur posisionerdan flow dengan 100 data interval kepercayaan 100 berurutan yang paling steady state dari record data histori maka dibangun algoritma pengambilan keputussan fuzzy interference system menggunakan normalized histogram. Penelitian ini terdiri dari 2 phase yaitu uji algoritma SPC - Adaptive Fuzzy membership function MSPCAF secara offline dan online real time pada real plant. Dari hasil penelitian ini MSPCAF dapat digunakan untuk memonitoring variable proses pada plant yang berbeda dan lebih sensitif mendeteksi pola nonrandom data dengan 3s control limit dibandingkan dengan uniform fuzzy yang dilakukan dengan trial and error. Dimana dengan menggunakan uniform fuzzy mampu mendeteksi kondisi out of control random data 100 detection namun tidak ada deteksi kondisi out of control pola nonrandom data 0 detection sehingga pada 102 data 7-11 febuary 2006 terjadi false alarm 5.88 6 data dan missed alarm 1.96 2 data. Sedangkan dengan menggunakan algoritma MSPCAF mampu mendeteksi baik kondisi out of control random data 100 detection maupun kondisi out of control pola nonrandom data 100 detection sehingga tidak ditemukan false alarm dan missed alarm.


ABSTRACT

Product quality strongly depend on production process quality. So performance of production process must be strictly monitored. Statistical Process Control SPC is a technique used for evaluate process performance using statistical method to analize control and influence process performance improvement. Combined of two control chart indidual chart and cusum chart could improve performance to analize a process quality with SPC method In this final project research made an algorithm which is able to used for resulting SPC decision about process status with fuzzy interference system. In order to detect plant characteristic must be made a fuzzy algorithm which could be applicated to variables process temperature flow pressure and displacement using 100 data consecutively confidence level 100 steady state approaching the aim of historical data records made a Fuzzy Inference System making decision algorithm using normalized histogram. This research consist of two phase offline SPC - Adaptive Fuzzy membership function MSPCAF algorithm test and real time real plant online SPC - Adaptive Fuzzy membership function MSPCAF algorithm test. MSPCAF could be used for different plant process wariable monitoring also it more sensitive detecting non random out of control data with 3s control limit rule than using uniform fuzzy membership function that gets Its parameter by trial and error. Uniform fuzzy membership function able to detect all random out of control data but it unable detect non random out of control data resulting false alarm 5.88 6 data and missed alarm 1.96 2 data on 102 data 7-11 febuary 2006. MSPCAF able to detect both random and nonrandom out of control data 100 detected so resulting no false and missed alarm on 102 data 7-11 febuary 2006.



KeywordsAdaptive Fuzzy Inference System, grafik kontrol Individual, grafik kontrol CUSUM,Online monitoring
 
Subject:  Statistik -- metode grafis
Contributor
  1. KATHERIN INDRIAWATI,ST,MT
Date Create: 18/12/2008
Type: Text
Format: pdf
Language: Indonesian
Identifier: ITS-Undergraduate-3100008032150
Collection ID: 3100008032150
Call Number: RSF 658.500 727 Fem p


Source
Undergraduate Theses, Engineering Physics, RSF 658.500 727 Fem p, 2007

Coverage
ITS Community

Rights
Copyright @2007 by ITS Library. This publication is protected by copyright and permission should be obtained from the ITS Library prior to any prohibited reproduction, storage in a retrievel system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to ITS Library




[ Download - Summary ]

ITS-Undergraduate-3100008032150-3053.pdf




 Similar Document...




! ATTENTION !

To facilitate the activation process, please fill out the member application form correctly and completely

Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently

POLLING

Bagaimana pendapat Anda tentang layanan repository kami ?

Bagus Sekali
Baik
Biasa
Jelek
Mengecewakan





You are connected from 35.172.100.232
using CCBot/2.0 (https://commoncrawl.org/faq/)



Copyright © ITS Library 2006 - 2019 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan