EMAIL: PASSWORD:
Front Office
UPT. PERPUSTAKAAN
Institut Teknologi Sepuluh Nopember Surabaya


Kampus ITS Sukolilo - Surabaya 60111

Phone : 031-5921733 , 5923623
Fax : 031-5937774
E-mail : libits@its.ac.id
Website : http://library.its.ac.id

Support (Customer Service) :
timit_perpus@its.ac.id




Welcome..guys!

Have a problem with your access?
Please, contact our technical support below:
LIVE SUPPORT


Moh. Fandika Aqsa


Davi Wahyuni


Tondo Indra Nyata


Anis Wulandari


Ansi Aflacha




ITS » Undergraduate Theses » S1 Teknik Elektro
Posted by hassane@its.ac.id at 26/05/2010 14:20:52  •  2809 Views


DETEKSI HUBUNG SINGKAT PADA BELITAN STATOR MOTOR INDUKSI SATU FASA MENGGUNAKAN JARING SARAF TIRUAN

DETECTION OF STATOR WINDING SHORT CIRCUIT AT SINGLE PHASE INDUCTION MOTOR USING ARTIFICIAL NEURAL NETWORKS

Author :
WARDANA, DICKY NOVA  ( 2205100157 )




ABSTRAK

Motor induksi adalah salah satu peralatan utama dalam industri. Kerusakan pada bagian motor akan mempengaruhi proses produksi pada industri. Oleh karena itu deteksi dini kerusakan motor induksi sangat dibutuhkan untuk menghindari kerusakan yang lebih parah. Tugas akhir ini akan menyajikan metode identifikasi untuk mendeteksi hubung singkat pada stator motor induksi satu fasa. Metode yang diajukan digunakan untuk mengidentifikasi hubung singkat dengan durasi yang sangat singkat impedansi tinggi dan gangguan non-periodik pada belitan stator. Gabungan transformasi wavelet dan jaring saraf tiruan digunakan sebagai metode pengidentifikasi kerusakan. Sedangkan variabel identifikasi yang digunakan pada metode tersebut diambil dari sinyal arus stator. Untuk mencapai tujuan yang diinginkan data percobaan arus hubung singkat 25 50 dan 75 dari total belitan digunakan sebagai studi kasus. Hasil simulasi menunjukkan bahwa seluruh data pelatihan teridentifikasi 100 sedangkan data validasi teridentifikasi rata-rata 85.


ABSTRACT

Induction motor is one of the main equipment in industries. Failure of machine parts will affect the industrial production. Therefor early detection for induction motor damages is totally needed to avoid severe damage. This final project presents the identification method to detect stator fault in single phase induction motor. The propose methode identified very short duration high impedance and non periodic fault at stator winding. Combination of wavelet transform and neural networks are used as method of fault identifier. Identification variable of this method is taken from stator intake current signal. To reach the objective experimental data 25 50 and 75 short circuit of total winding is used as case study. The simulation results show that all of training data 100 identified whereas validation data identified 85.



KeywordsJaring Saraf Tiruan; Motor Induksi Satu Fasa; Deteksi Hubung Singkat
 
Subject:  Jaringan Saraf tiruan
Contributor
  1. Prof. DR. Ir. Mauridhi Hery Purnomo M.Eng.
Date Create: 04/02/2010
Type: Text
Format: pdf
Language: Indonesian
Identifier: ITS-Undergraduate-3100010038271
Collection ID: 3100010038271
Call Number: RSE 006.32 War d


Source
Degree, Electrical Engeenering, RSE 006.32 War d, 2010

Coverage
ITS Community

Rights
Copyright @2010 by ITS Library. This publication is protected by copyright and per obtained from the ITS Library prior to any prohibited reproduction, storage in a re transmission in any form or by any means, electronic, mechanical, photocopying, reco For information regarding permission(s), write to ITS Library




[ Download - Open Access ]

  1.  ITS-Undergraduate-10392-Abstract_id.pdf - 5 KB
  2.  ITS-Undergraduate-10392-Abstract_en.pdf - 4 KB
  3.  ITS-Undergraduate-10392-Conclusion.pdf - 5 KB
  4.  ITS-Undergraduate-10392-Paper.pdf - 506 KB




 Similar Document...




! ATTENTION !

To facilitate the activation process, please fill out the member application form correctly and completely

Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently

POLLING

Bagaimana pendapat Anda tentang layanan repository kami ?

Bagus Sekali
Baik
Biasa
Jelek
Mengecewakan





You are connected from 3.214.224.224
using CCBot/2.0 (https://commoncrawl.org/faq/)



Copyright © ITS Library 2006 - 2020 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan