EMAIL: PASSWORD:
Front Office
UPT. PERPUSTAKAAN
Institut Teknologi Sepuluh Nopember Surabaya


Kampus ITS Sukolilo - Surabaya 60111

Phone : 031-5921733 , 5923623
Fax : 031-5937774
E-mail : libits@its.ac.id
Website : http://library.its.ac.id

Support (Customer Service) :
timit_perpus@its.ac.id




Welcome..guys!

Have a problem with your access?
Please, contact our technical support below:
LIVE SUPPORT


Moh. Fandika Aqsa


Davi Wahyuni


Tondo Indra Nyata


Anis Wulandari


Ansi Aflacha




ITS » Undergraduate Theses » Fisika
Posted by dee@its.ac.id at 23/09/2010 09:02:30  •  2020 Views


IDENTIFIKASI VARIETAS UNGGUL KEDELAI BERDASARKAN WARNA DENGAN FUZZY CLUSTER MEANS

IDENTIFICATION THE BEST VARIETY OF SOYBEEN BASED ON COLOR BY FUZZY CLUSTER MEANS

Author :
LASTOMO, DWI ( 1105100054 )




ABSTRAK

Telah dilakukan tugas akhir tentang identifikasi varietas unggul kedelai bedasarkan warna dengan Fuzzy Cluster Means FCM. Tugas akhir ini bertujuan untuk menentukan identifikasi varietas unggul kedelai dengan menggunakan FCM berdasarkan warna kemudian membandingkaanya dengan hasil pengolahan data melalui jaringan syaraf tiruan JST. Percobaan ini menggunakan benih kedelai sebagai objek dari varietas Anjasmoro Argomulyo Argopuro dan Panderman. Data masukan yang digunakan dalam tugas akhir ini berupa data RGB dari masing-masing varietas dengan variasi warna tempat pengambilan data yaitu hitam dan coklat serta jenis lampu yang digunakan yaitu pijar dan halogen. Data tersebut diolah dengan menggunakan FCM sehingga diperoleh keluaran berupa pusat klaster dan derajat keanggotaan serta nilai error dengan metode FCM. Hasil yang diperoleh menunjukkan bahwa tiap varietas memenuhi sifat derajat keanggotaan fuzzy yaitu maksimum pada satu kelas dan minimum untuk kelas yang lain. Untuk tingkat keakuratan FCM memberikan kebenaran sebesar 80. Jika dibandingakan dengan JST FCM kurang akurat namun lebih konsisten dalam memberikan kebenaran.


ABSTRACT

Final project about identification of soybean varieties based on color by Fuzzy Cluster Means FCM was done. This final project aims to determine the identification of soybean varieties using FCM based on the color then compared by results of data processing by artificial neural network JST. This experiment used soybean seeds as objects of varieties Anjasmoro Argomulyo Argopuro and Panderman. Input data used in this final project in the form of RGB data of each variety with the color variations of data retrieval which is black and brown and kind of lamps used namely incandescent and halogen. The data is processed by using FCM to produce the output of the cluster centers and membership degrees and the value of an error with FCM method. The resulst of the final project it is known that each character varieties meet fuzzy membership degrees ie at a maximum and minimum class for another class. For the level of accuracy FCM provides the truth as much as 80. If it compared by JST FCM is less accurate but more consistent in giving the truth.



KeywordsSoybeen; RGB; Fuzzy Cluster means
 
Subject:  Pengolahan citra; analisis Cluster
Contributor
  1. Dr. Melania Suweni Muntini, M.T.
Date Create: 05/02/2010
Type: Text
Format: pdf.
Language: Indonesian
Identifier: ITS-Undergraduate-3100010039806
Collection ID: 3100010039806
Call Number: RSFi 006.42 Las i


Source
Undergraduated Thesis, Physics, RSFi 006.42 Las i, 2010

Coverage
ITS Community

Rights
Copyright @2010 by ITS Library. This publication is protected by copyright and per obtained from the ITS Library prior to any prohibited reproduction, storage in a re transmission in any form or by any means, electronic, mechanical, photocopying, reco For information regarding permission(s), write to ITS Library




[ Download - Open Access ]

  1.  ITS-Undergraduate-12352-Abstract_id.pdf - 14 KB
  2.  ITS-Undergraduate-12352-Abstract_en.pdf - 14 KB
  3.  ITS-Undergraduate-12352-Conclusion.pdf - 14 KB




 Similar Document...




! ATTENTION !

To facilitate the activation process, please fill out the member application form correctly and completely

Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently

POLLING

Bagaimana pendapat Anda tentang layanan repository kami ?

Bagus Sekali
Baik
Biasa
Jelek
Mengecewakan





You are connected from 34.237.76.91
using CCBot/2.0 (https://commoncrawl.org/faq/)



Copyright © ITS Library 2006 - 2019 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan