EMAIL: PASSWORD:
Front Office
UPT. PERPUSTAKAAN
Institut Teknologi Sepuluh Nopember Surabaya


Kampus ITS Sukolilo - Surabaya 60111

Phone : 031-5921733 , 5923623
Fax : 031-5937774
E-mail : libits@its.ac.id
Website : http://library.its.ac.id

Support (Customer Service) :
timit_perpus@its.ac.id




Welcome..guys!

Have a problem with your access?
Please, contact our technical support below:
LIVE SUPPORT


Moh. Fandika Aqsa


Davi Wahyuni


Tondo Indra Nyata


Anis Wulandari


Ansi Aflacha




ITS » Undergraduate Theses » S1 Teknik Elektro
Posted by ansi@its.ac.id at 08/11/2011 10:51:00  •  1843 Views


PENGEMBANGAN MODUL KLASIFIKASI PADA M-ANALYZER SISTEM PORTABEL CERDAS UNTUK IDENTIFIKASI PARASIT MALARIA

CLASSIFICATION MODULE DEPELOPMENT M-ANALYZER SMART PORTABLE SYSTEM FOR MALARIA IDENTIFICATION

Author :
SIRAIT, LAURENT RIARA  ( 2208100637 )




ABSTRAK

Pendeteksian malaria dilakukan dengan menemukan parasit dalam darah yang diperiksa dengan uji mikroskop di laboratorium yang memiliki infrastruktur yang memadai seperti bangunan peralatan laboratorium dan lain-lain. Namun di daerah terpencil atau pedesaan yang belum memiliki laboratorium pendeteksian penyakit ini memerlukan waktu yang lama sehingga sulit bagi pasien bisa segera mendapat penanganan dan dapat meningkatkan resiko kematian. Oleh karena itu dibutuhkan sistem terpadu dan portabel yang bisa digunakan untuk mendiagnosa penyakit malaria di tempat kejadian. M-Analyzer merupakan aplikasi yang terdiri dari beberapa modul sebagai alat uji diagnostik penyakit malaria portabel yang cerdas cepat dan efektif yang dilakukan dengan penggunaan mikroskop digital dan proses komputerisasi. Perancangan modul klasifikasi dilakukan dengan memproses citra hapusan darah merah hasil proses segementasi . Untuk mendapatkan nilai ciri dari citra disajikan dalam bentuk histogram dan kemudian digunakan beberapa fitur sebagai dasar penjelasan dari properti histogram yang meliputi mean standar deviasi kecondongan skewness keruncingan kurtosis dan entropy dari matriks co-ocurrence dari citra. Vektor input dievaluasi dengan sistem jaringan saraf tiruan model Multi Layer Perceptron MLP untuk mengidentifikasi eritrosit yang terinfeksi dengan yang tidak terinfeksi dan mengklasifikasi tingkat infeksi malaria berdasarkan perkembangan hidup dari plasmodium falciparum. Seratus enam puluh citra malaria digunakan untuk pelatihan dan empat puluh citra malaria digunakan untuk pengujian. Dari modul klasifikasi ini diperoleh efektifitas dari eritrosit yang terinfeksi sebesar 974 tingkat tropozoit sebesar 100 tingkat skizon sebesar 9259 dan gametosit sebesar 100 dengan sensitifitas sebesar 100 dan spesifisitas 80.


ABSTRACT

Malaria detection is performed by finding the parasite in the blood which examined with a microscope test in a laboratory that has adequate infrastructure such as its building laboratory equipment etc. But in remote or rural areas which do not have such a laboratory the detection of this disease requires a long time so it is difficult for patients to receive treatment immediately and can increase the risk of death. Therefore an integrated and portable system that can be used to dianose malaria in site is needed. M-Analyzer is an application that consists of several modules as a portable and smart malaria diagnostic test equipment which performed malaria diagnose fast and effective by using a digital microscope and computerization processing. The design of this classification module was performed by processing images of red blood smears which had been segmented to separate the red blood cell form its background. Characteristic values like mean standard deviation skewness and kurtosis were extracted from histogram of the image and entropy from co-ocurrence matrix of the image and then fed as input vector of Artificial Neural Network system with Multi Layer Perceptron MLP model to identify infected erythrocytes with non-infected and classifying malaria infection stage based on the life cycle of the plasmodium falciparum. One hundred and sixty malaria images were used for training and forty malaria images were used for testing. From this classification module was obtained effectiveness of infected erythrocytes of 97.4 tropozoit stage of 100 schizont stage of 92.59 and gametocytes stage of 100 with a sensitivity of 100 and specificity of 80.



KeywordsM-Analyzer; histogram; mean; standar deviasi; skewness; kurtosis; entropy; matriks co-ocureence; Multi Layer Perceptron; plasmodium falciparum; tingkat infeksi; tropozoit; skizon; gametosit.
 
Subject:  Data Pengolahan
Contributor
  1. Dr. I Ketut Eddy Purnama,ST.,MT
  2. Diah Puspito Wulandari,ST.,M.Sc
Date Create: 07/02/2011
Type: Text
Format: pdf
Language: Indonesian
Identifier: ITS-Undergraduate-3100011043398
Collection ID: 3100011043398
Call Number: RSE 006.42 Sir p


Source
Undergraduate Thesis, Electrical Engineering, RSE 006.42 Sir p, 2011

Coverage
ITS Community

Rights
Copyright @2011 by ITS Library. This publication is protected by copyright and per obtained from the ITS Library prior to any prohibited reproduction, storage in a re transmission in any form or by any means, electronic, mechanical, photocopying, reco For information regarding permission(s), write to ITS Library




[ Download - Open Access ]

  1.  ITS-Undergraduate-15847-Abstract_id-pdf.pdf - 184 KB
  2.  ITS-Undergraduate-15847-Abstract_en-pdf.pdf - 358 KB
  3.  ITS-Undergraduate-15847-Conclusion-pdf.pdf - 213 KB
  4.  ITS-Undergraduate-15847-Paper-pdf.pdf - 927 KB




 Similar Document...




! ATTENTION !

To facilitate the activation process, please fill out the member application form correctly and completely

Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently

POLLING

Bagaimana pendapat Anda tentang layanan repository kami ?

Bagus Sekali
Baik
Biasa
Jelek
Mengecewakan





You are connected from 3.237.66.86
using CCBot/2.0 (https://commoncrawl.org/faq/)



Copyright © ITS Library 2006 - 2020 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan