EMAIL: PASSWORD:
Front Office
UPT. PERPUSTAKAAN
Institut Teknologi Sepuluh Nopember Surabaya


Kampus ITS Sukolilo - Surabaya 60111

Phone : 031-5921733 , 5923623
Fax : 031-5937774
E-mail : libits@its.ac.id
Website : http://library.its.ac.id

Support (Customer Service) :
timit_perpus@its.ac.id




Welcome..guys!

Have a problem with your access?
Please, contact our technical support below:
LIVE SUPPORT


Moh. Fandika Aqsa


Davi Wahyuni


Tondo Indra Nyata


Anis Wulandari


Ansi Aflacha




ITS » Paper and Presentation » Teknik Fisika S1
Posted by aprill@is.its.ac.id at 22/04/2013 08:37:15  •  1311 Views


PREDIKSI KADAR POLUTAN MENGGUNAKAN JARINGAN SYARAF TIRUAN JST UNTUK PEMANTAUAN KUALITAS UDARA DI KOTA SURABAYA

PREDICTION OF POLLUTANT CONCENTRATION USING ARTIFICIAL NEURAL NETWORK ANN FOR AIR QUALITY MONITORING IN SURABAYA CITY

Author :
ARIFIEN, NOVIE FITRIANI ( 2408100080 )




ABSTRAK

Ozon troposfer O3 merupakan salah satu jenis polutan yang menjadi permasalahan pencemaran udara di kota-kota besar di dunia. Di Surabaya berdasarkan laporan Badan Lingkungan Hidup BLH sejak tahun 2004 konsentrasi ozon troposfer telah melebihi batas baku mutu dan terus meningkat setiap tahunnya sehingga ozon troposfer kini menjadi salah satu polutan udara yang dominan. Oleh karena konsentrasi O3 yang melebihi standar dapat menyebabkan berbagai dampak negatif bagi kesehatan manusia dan lingkungan sekitar informasi mengenai konsentrasi O3 menjadi penting untuk diketahui masyarakat. Saat ini BLH hanya menggunakan pengukuran secara langsung untuk memonitor konsentrasi O3 di troposfer sehingga publik hanya dapat mengetahui kondisi saat itu tanpa adanya prediksi mengenai konsentrasi polutan tersebut dalam 1 atau 2 hari ke depan.Penelitian ini bertujuan untuk melakukan prediksi terhadap konsentrasi O3 dengan menggunakan metode Jaringan Syaraf Tiruan JST. Terdapat dua model JST yang digunakan dalam penelitian ini yaitu tipe multivariate dan time series.Hasil dari kedua model tersebut dibandingkan untuk mendapatkan model terbaik. Parameter pemilihan model didasarkan pada nilai root mean square error RMSE dan koefisien determinasi R2. Dari kedua model yang diusulkan di-dapatkan model terbaik untuk melakukan prediksi 1dan 2 hari ke depan adalah JST multivariate dengan RMSE 0.234 gm3 dan 0.265 gm3 serta R2 0.92 dan 0.76.


ABSTRACT

Tropospheric Ozone O3 is a common and widespread air pollutant especially in many urban cities that causes injury to the environment and human health. In Surabaya report from its environmental departement shows that since 2004 O3 concentration has been already beyond its acceptable limit and continued to increase every year. The Surabaya Environmental Departement uses a real-time measurement system that only provides current data of the O3 level in the troposphere. However the forecast of this low ground ozone level is needed to better anticipate its effect. This study is aimed to predict tropospheric ozone concentration using the artificial neural network ANN method. There are two different neural network methods that are used in this study the multivariate and time series. These models will be compared to get the best model. The best result is according to performance of root mean square error RMSE and determination coefficient R2. The best result for forecast one and two days ahead showedby multivariate ANN that has RSME 0.234 gm3and 0.265 gm3 also R2 0.92 and 0.76.



Keywordsjaringan syaraf tiruan; ozon troposfer; pencemaran udara
 
Subject:  Kualitas udara teknik lingkungan jaringan saraf (ilmu komputer)
Contributor
  1. Ir. Syamsul Arifin, MT
  2. Dr. Bambang Lelono Widjiantoro, ST, MT
Date Create: 22/04/2013
Type: Text
Format: pdf
Language: Indonesian
Identifier: ITS-paper-24021130002568
Collection ID: 24021130002568
Call Number: RSF 628.16 Ari p


Source
Paper and Presentation, Physics Engineering, RSF 628.16 Ari p, 2013

Coverage
ITS Community

Rights
Copyright @2013 by ITS Library. This publication is protected by copyright and per obtained from the ITS Library prior to any prohibited reproduction, storage in a re transmission in any form or by any means, electronic, mechanical, photocopying, reco For information regarding permission(s), write to ITS Library




[ Download - Open Access ]

  1.  ITS-paper-24726-2408100080-Paper.pdf - 681 KB
  2.  ITS-paper-24726-2408100080-Presentation.pdf - 1249 KB




 Similar Document...




! ATTENTION !

To facilitate the activation process, please fill out the member application form correctly and completely

Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently

POLLING

Bagaimana pendapat Anda tentang layanan repository kami ?

Bagus Sekali
Baik
Biasa
Jelek
Mengecewakan





You are connected from 18.207.106.142
using CCBot/2.0 (https://commoncrawl.org/faq/)



Copyright © ITS Library 2006 - 2020 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan