EMAIL: PASSWORD:
Front Office
UPT. PERPUSTAKAAN
Institut Teknologi Sepuluh Nopember Surabaya


Kampus ITS Sukolilo - Surabaya 60111

Phone : 031-5921733 , 5923623
Fax : 031-5937774
E-mail : libits@its.ac.id
Website : http://library.its.ac.id

Support (Customer Service) :
timit_perpus@its.ac.id








Welcome..guys!

Have a problem with your access?
Please, contact our technical support below:
LIVE SUPPORT


Taufik Rachmanu


Dewi Eka Agustina


Ansi Aflacha Putri


Tondo Indra Nyata


Aprillia Tri Wulansari


Moh. Fandika Aqsa




! ATTENTION !

To facilitate the activation process, please fill out the member application form correctly and completely
Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently

Still Confuse?
Please read our User Guide

Keyword
Mode
Expanded Search (for Free text search only)
 
OR You May Search Our Knowledges Using Google Customize Search :

Custom Search

ITS » Master Theses » Statistika - S2
Posted by aguss at 14/05/2009 19:53:17  •  4894 Views


PERBANDINGAN ESTIMASI TOTAL POPULASI PENDUDUK BERDASARKAN MODEL PENALIZED SPLINE DENGAN ESTIMASI RASIO

THE COMPARISON BETWEEN THE TOTAL ESTIMATION OF POPULATION BASED ON PENALIZED SPLINE MODEL AND RATIO ESTIMATION

Created by :
KALE, MATAMIRA B. 



SubjectAnalisis regresi
KeywordModel linear campuran
Penalized Spline
REML

Description:

Estimasi total populasi berdasarkan sampel dengan peluang inklusi yang tidak sama dikembangkan dengan berbagai metode, baik yang berdasarkan desain samplingnya maupun yang berdasarkan model. Estimasi berdasarkan model regresi parametrik seperti Generalized Regression (GR) menghasilkan estimator yang lebih efisien dibandingkan dengan estimator Horvitz Thompson (HT). Kelemahan estimasi berdasarkan model adalah jika model yang dibentuk tidak sesuai dengan pola data maka estimator yang dihasilkan menjadi tidak efisien. Dengan berkembangnya regresi nonparametrik Penalized Spline dengan fleksibilitas yang tinggi, maka dengan metode ini kelemahan estimasi berbasis model dapat direduksi. Tulisan ini bertujuan untuk mengkaji prosedur estimasi total populasi berdasarkan model Penalized Spline. Pembahasan disertai dengan perbandingan hasil estimasi total populasi penduduk 0-4 tahun berdasarkan model Penalized Spline dengan metode estimasi rasio yang digunakan Badan Pusat Statistik (BPS) dalam estimasi total populasi pada Survei Sosial Ekonomi Nasional (SUSENAS). Estimasi total populasi berdasarkan model Penalized Spline diperoleh melalui estimasi rata-rata unit sampel tahap pertama berdasarkan model regresi Penalized Spline linear. Estimasi parameter regresi menggunakan kerangka kerja model linear campuran dimana estimasi parameter efek tetap menggunakan metode maximum likelihood dan prediktor parameter efek random berdasarkan kriteria prediktor linear tak bias terbaik. Estimasi komponen varians menggunakan metode Restricted Maximum Likelohood (REML). Berdasarkan kriteria MSE (Mean Square Error), estimasi berdasarkan model Penalized Spline lebih baik dibandingkan dengan estimasi rasio untuk estimasi total populasi penduduk 0-4 tahun di Kota Kupang.


Alt. Description

The estimation of total population based on sample with an unequal inclusion probability is developed using various kind of methods either those based on its sampling design or based on the model. The estimation which is based on the parametric regression model such as Generalized Regression (GR) result in a more efficient estimator compared with Horvitz Thompson (HT) estimator. The weakness of the estimation based on model is that if the model formed is misspecified, the estimator will not be efficient. With the progress of the nonparametric regression of Penalized Spline with high flexibility, then with this method the weakness of the model-based estimation can be reduced. This thesis is aimed at analysing the estimation procedure of total estimation of population based on Penalized Spline model. The description is associated with the comparison of result of the total estimation of population for people at 0 – 4 years of age based on Penalized Spline model with the ratio estimation model used by BPS Statistics Indonesian in estimating the total population during National Social Economic Survey (SUSENAS). The total estimation of population based on Penalized Spline model is derived from the mean estimation of primary sampling unit based on the regression model of linear Penalized Spline. The estimation of the regression parameter using the framework of linear mixed model where the estimation of fixed effect parameter uses the maximum likelihood method and random effect parameter predictor which based on the best unbiased linear predictor. The estimation of variance components uses Restricted Maximum Likelohood (REML) method. Based on MSE (Mean Square Error) criteria, the estimation of population total for people at 0–4 years of age in Kota Kupang based on Penalized Spline model is better than ratio estimation.

Contributor:
  1. Drs. I Nyoman Latra, MS
    Sodikin Baidowi, M.Stats.
Date Create:14/05/2009
Type:Text
Format:pdf
Language:Indonesian
Identifier:ITS-Master-3100008031180
Collection ID:3100008031180
Call Number:RTSt 519.536 Kal p


Source :
Master Theses, Statistics, RTSt 519.536 Kal p, 2008

Coverage :
ITS Community Only


Publication URL :
http://digilib.its.ac.id/perbandingan-estimasi-total-populasi-penduduk-berdasarkan-model-penalized-splinedengan-estimasi-rasio-4143.html




[ Free Download - Free for All ]

...No Files...

[ FullText Content - Please, register first ]

  1. ITS-Master-4143-1306201708-judul.pdf - 1085 KB
  2. ITS-Master-4143-1306201708-bab1.pdf - 18 KB
  3. ITS-Master-4143-1306201708-bab2.pdf - 72 KB
  4. ITS-Master-4143-1306201708-bab3.pdf - 54 KB
  5. ITS-Master-4143-1306201708-bab4.pdf - 130 KB
  6. ITS-Master-4143-1306201708-kesimpulan.pdf - 52 KB
  7. ITS-Master-4143-1306201708-lampiran.pdf - 183 KB



Give your Comment here...


 10 Similar Document...



 10 Related Document...






HELP US !
You can help us to define the exact keyword for this document by clicking the link below :

Model , Model linear campuran , Penalized , Penalized Spline , REML , Spline , campuran , linear



POLLING

Bagaimana pendapat Anda tentang layanan repository kami ?

Bagus Sekali
Baik
Biasa
Jelek
Mengecewakan




52641945


Visitors Today : 1
Total Visitor : 2515776

Hits Today : 10402
Total Hits : 52641945

Visitors Online: 1


Calculated since
16 May 2012

You are connected from 10.199.13.5
using CCBot/2.0 (http://commoncrawl.org/faq/)


ITS Digital Repository Feeds



Copyright © ITS Library 2006 - 2014 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan