EMAIL: PASSWORD:
Front Office
UPT. PERPUSTAKAAN
Institut Teknologi Sepuluh Nopember Surabaya


Kampus ITS Sukolilo - Surabaya 60111

Phone : 031-5921733 , 5923623
Fax : 031-5937774
E-mail : libits@its.ac.id
Website : http://library.its.ac.id

Support (Customer Service) :
timit_perpus@its.ac.id








Welcome..guys!

Have a problem with your access?
Please, contact our technical support below:
LIVE SUPPORT


Taufik Rachmanu


Moh. Fandika Aqsa


Tondo Indra Nyata


Ansi Aflacha Putri


Aprillia Tri Wulansari


Dewi Eka Agustina




! ATTENTION !

To facilitate the activation process, please fill out the member application form correctly and completely
Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently

Still Confuse?
Please read our User Guide

Keyword
Mode
Expanded Search (for Free text search only)
 
OR You May Search Our Knowledges Using Google Customize Search :

Custom Search

ITS » Master Theses » Teknik Informatika - S2
Posted by erna at 03/01/2007 14:59:39  •  6144 Views


PENGENALAN WAJAH DENGAN MENGGUNAKAN ANALISIS KOMPONEN UTAMA

FACE RECOGNITION USING PRINCIPAL COMPONENTS

Created by :
SETYATI, ENDANG  



KeywordAnalisa komponen utama
Basis data

Description:

Terdapat banyak metode yang digunakan untuk mengenali wajah-wajah.Template Matching adalah salah satu dari metode yang paling sederhana tetapi metode ini tidak stabil dan sensitif terhadap noise. Pendekatan pada masalah pengenalan wajah di sini adalah menggunakan metode analisis komponen utama (principal components analysis) yang merupakan cara yang lebih baik untuk mencoba mengenali wajah-wajah sesudah beberapa wajah dalam basis data dimasukkan sebagai pelatihan wajah (training face). Informasi yang terdiri dari gambar-gambar wajah (face images) diorientasikan dalam keadaan tampak depan (vertically frontal view) dengan merubah ekspresi wajah. Metode analisis komponen utama (PCA) ini mencoba untuk menentukan komponen utama dari distribusi wajah-wajah atau vektor-vektor karakteristik (eigenvectors) dari matriks kovariansi dari kumpulan gambar-gambar wajah yang telah dinormalisasi. Vektor-vektor karakteristik ini dapat dianggap sebagai kumpulan feature yang mana merupakan karakteristik bersama variasi antar gambar-gambar wajah. Dengan mengacu pada teori yang telah diketahui dengan baik dalam pengenalan pola, kita tahu bahwa masing-masing gambar dalam tahap pelatihan dapat irepresentasikan dengan tepat dalam istilah kombinasi linier dari wajah-wajah karakteristik (eigenfaces). Apabila kita hanya menggunakan beberapa vektor karakteristik yang mempunyai nilai karakteristik (eigenvalues) terbesar, kita dapat mengaproksimasikan dan merepresentasikan variasi yang paling berarti dalam kumpulan gambar-gambar wajah. Implementasi pengenalan wajah dalam tesis ini menggunakan basis data wajah Manchester yang terdiri dari 10 orang dengan 20 foto yang berbeda-beda, yaitu 100 buah foto untuk training dan 100 buah foto untuk testing. Implementasi program pengenalan wajah dengan menggunakan PCA ini dilakukan dengan bantuan compiler Borland Delphi versi 5.0 for Windows dan menghasilkan 90 % wajah yang dikenali.


Alt. Description

There are many methods used to recognize faces. Template matching is one of the simplest method but it is not stable and sensitive to noise. Our approach to the face recognition problem is to use the principal components analysis (PCA). Principal components analysis and neural network methods are the better way to try to recognize faces after some faces in the database have been trained. An information content of face images are vertically oriented frontal view with wide expression change. This principal components analysis method tries to find the principal component of the distribution of faces, or the eigenvectors of the covariance matrix of the set of normalized face images. These eigenvectors can be considered as a set of features which together characterize the variation between face images. By referring to a well-known theory in pattern recognition, we know that each of the images in the training set can be represented exactly in terms of a linear combination of the eigenfaces. If we use only some eigenvectors that have the largest eigenvalues, we can approximate and represent the most significant variation within the face image set. Neural networks method are used to recognize the face through learning correct classification. The implementation of face recognition described in this thesis uses Manchester Face Database that consists of 10 persons with 20 different images : 100 images for training and the other 100 images for testing. The implementation of program of face recognition using PCA is operated using Borland Delphi Compiler version 5. Ofor Windows, the result is 90 % recognized faces.

Contributor:
  1. Dr. Ir. Handayani Tjandrasa, M.Sc
Date Create:03/01/2007
Type:Text
Format:pdf; 87 pages
Language:Indonesian
Identifier:ITS-Master-3100001013051
Collection ID:3100001013051
Call Number:519.535 4 Set


Source :
Theses Informatika Engineering RT 519.535 4 Set, 2000

Coverage :
ITS Community

Rights :
Copyright @2005 by ITS Library. This publication is protected by copyright and permission should be obtained from the ITS Library prior to any prohibited reproduction, storage in a retrievel system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to ITS Library


Publication URL :
http://digilib.its.ac.id/pengenalan-wajah-dengan-menggunakan-analisis-komponen-utama-560.html




[ Free Download - Free for All ]

...No Files...

[ FullText Content - Please, register first ]

  1. ITS-Master-560-2698201006-its-judul.pdf - 388 KB
  2. ITS-Master-560-2698201006-its-bab1.pdf - 275 KB
  3. ITS-Master-560-2698201006-its-bab2.pdf - 228 KB
  4. ITS-Master-560-2698201006-its-bab3.pdf - 562 KB
  5. ITS-Master-560-2698201006-its-bab4.pdf - 997 KB
  6. ITS-Master-560-2698201006-its-bab5.pdf - 2234 KB
  7. ITS-Master-560-2698201006-its-babkesimp.pdf - 217 KB



Give your Comment here...


 10 Similar Document...

     No similar subject found !

 10 Related Document...

     No related subject found !




HELP US !
You can help us to define the exact keyword for this document by clicking the link below :

Analisa , Analisa komponen utama , Basis , Basis data , data , komponen , utama



POLLING

Bagaimana pendapat Anda tentang layanan repository kami ?

Bagus Sekali
Baik
Biasa
Jelek
Mengecewakan




53828013


Visitors Today : 1
Total Visitor : 2515808

Hits Today : 12781
Total Hits : 53828013

Visitors Online: 1


Calculated since
16 May 2012

You are connected from 10.199.13.5
using CCBot/2.0 (http://commoncrawl.org/faq/)


ITS Digital Repository Feeds



Copyright © ITS Library 2006 - 2014 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan