EMAIL: PASSWORD:
Front Office
UPT. PERPUSTAKAAN
Institut Teknologi Sepuluh Nopember Surabaya


Kampus ITS Sukolilo - Surabaya 60111

Phone : 031-5921733 , 5923623
Fax : 031-5937774
E-mail : libits@its.ac.id
Website : http://library.its.ac.id

Support (Customer Service) :
timit_perpus@its.ac.id








Welcome..guys!

Have a problem with your access?
Please, contact our technical support below:
LIVE SUPPORT


Taufik Rachmanu


Dewi Eka Agustina


Ansi Aflacha Putri


Tondo Indra Nyata


Aprillia Tri Wulansari


Moh. Fandika Aqsa




! ATTENTION !

To facilitate the activation process, please fill out the member application form correctly and completely
Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently

Still Confuse?
Please read our User Guide

Keyword
Mode
Expanded Search (for Free text search only)
 
OR You May Search Our Knowledges Using Google Customize Search :

Custom Search

ITS » Undergraduate Theses » Teknik Informatika
Posted by dewi007 at 30/12/2009 16:58:12  •  4172 Views


PENGGALIAN KAIDAH ASOSIASI MENGGUNAKAN METODE APRIORI-TFP PADA STRUKTUR DATA T-TREE DAN P-TREE

ASSOCIATION RULE MINING USING THE APRIORI-TFP METHOD ON T-TREE AND P-TREE DATA STRUCTURES

Created by :
Karim, Farid Abdul ( 5100100012 )



SubjectPerangkat lunak komputer
Alt. Subject Data Structure (Computer Science)
KeywordT-Tree
P-Tree
Apriori-TFP
Kaidah Asosiasi

Description:

Penggalian kaidah asosiasi mempunyai peranan penting dalam proses pengambilan keputusan. Tahapan besar dari proses ini adalah mengidentifikasikan frequent itemset dan membentuk kaidah asosiasi dari itemset tersebut. Kaidah asosiasi digunakan untuk menggambarkan hubungan antar item pada data transaksional. Namun, karena sangat besarnya data transaksional yang biasa digunakan dalam praktek. Maka diperlukan suatu metode yang efisien guna mengoptimalkan waktu proses yang dibutuhkan. Dalam Tugas Akhir ini dibuat aplikasi data mining untuk pencarian kaidah asosiasi menggunakan metode Apriori-TFP (Total from Partial). metode ini dimulai dengan proses pembangkitan P-Tree untuk membentuk sebuah tree berdasarkan hasil pembacaan basis data per transaksi. Semakin banyak transaksi yang terlibat maka semakin besar dan rumit bentuk tree yang terbuat. Hasil pembentukan P-Tree digunakan dalam proses. Transformasi P-Tree menjadi P-Tree table yang dibentuk berdasarkan tingkatan dari masing-masing item. Selanjutnya, table ini dijadikan sebagai masukan untuk proses pencarian kaidah asosiasi. Aplikasi dilakukan berbagai uji coba.dari seluruh uji coba yang telah dilakukan dapat disimpulkan semakin kecil nilai minimuk support yang ditentukan akan mengakibatkan waktu komputasi secara total akan semakin lama. Begitu juga jika jumlah item dan jumlah transaksi yang terlibat semakin besar, maka akan mengkibatkan waktu komputasi dan kebutuhan memory akan semakin meningkat. Selain itu, uji coba aplikasi ini membutuhkan waktu komputasi yang jauh lebih cepat dibandingkan dengan aplikasi yang menggunakan metode Apriori.


Alt. Description

Association rule mining plays an important role in a decision making process. The main task of an association rules mining involves a process for identifying frequent itemsets prior to a process of generating association rules. These association rules are used to describe the relationship among items contained in the transactional data. However, due to the large number of transactional data that must be processed, an efficient method for identifying frequent itemsets and generating the association rules is required to reduce the overal computing time. In this finel project, an aplication of data mining for generating association rules is implemented using the apriori-TFP (Total from Partial). In this method, a P-Tree generation is first conducted to build a tree based on result of the database scan of the transactional data. The more the data that must be processed, the more complicated tree will be produced. Based on the level of each item contained in T-Tree, a P-Tree Table is then transformed accordingly. Finally, the resulting P-Tree Table is used as an input to a process of association rules mining. The application that has been implemented was tested agains several transactional data. The experimental result show that the smaller the minimum support value, the longer the total computing time required. Similary, the larger the number of items and transactions, the larger the amount of memory consumed. In compared to the epriori method, the application runs significantly faster than that of the apriori method.

Contributor:
  1. Prof.Dr.Ir Arief Djunaidy, M.sc
    Darlis Herumurti, S.kom
Date Create:30/12/2009
Type:Text
Format:pdf.
Language:Indonesian
Identifier:ITS-Undergraduate-3100007028759
Collection ID:3100007028759
Call Number:RSIf 005.73 Kar p


Source :
Undergraduate Theses of Informatics Engineering, RSIf 005.73 Kar p, 2007

Coverage :
ITS Community Only

Rights :
Copyright @2007 by ITS Library. This publication is protected by copyright and permission should be obtained from the ITS Library prior to any prohibited reproduction, storage in a retrievel system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to ITS Library


Publication URL :
http://digilib.its.ac.id/penggalian-kaidah-asosiasi-menggunakan-metode-aprioritfp-pada-struktur-data-ttree-dan-ptree-6735.html




[ Free Download - Free for All ]

  1.  ITS-Undergraduate-6735-5100100012-judul.pdf - 75 KB
  2.  ITS-Undergraduate-6735-5100100012-bab1.pdf - 32 KB
  3.  ITS-Undergraduate-6735-5100100012-kesimpulan.pdf - 27 KB

[ FullText Content - Please, register first ]

  1. ITS-Undergraduate-6735-5100100012-bab2.pdf - 90 KB
  2. ITS-Undergraduate-6735-5100100012-bab3.pdf - 131 KB
  3. ITS-Undergraduate-6735-5100100012-bab4.pdf - 420 KB
  4. ITS-Undergraduate-6735-5100100012-bab5.pdf - 74 KB



Give your Comment here...


 10 Similar Document...



 10 Related Document...






HELP US !
You can help us to define the exact keyword for this document by clicking the link below :

Apriori-TFP , Asosiasi , Kaidah , Kaidah Asosiasi , P-Tree , T-Tree



POLLING

Bagaimana pendapat Anda tentang layanan repository kami ?

Bagus Sekali
Baik
Biasa
Jelek
Mengecewakan




51179439


Visitors Today : 1
Total Visitor : 2515747

Hits Today : 30415
Total Hits : 51179438

Visitors Online: 1


Calculated since
16 May 2012

You are connected from 10.199.13.5
using CCBot/2.0 (http://commoncrawl.org/faq/)


ITS Digital Repository Feeds



Copyright © ITS Library 2006 - 2014 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan