THE PARTITION DIMENSION FOR TOTAL GRAPH AND REGULAR GRAPH OF A COMMUTATIVE RING

Name : Dian Mustofani
NRP : 1212 201 003
Department : Mathematics FMIPA-ITS
Supervisor : Dr. Subiono, M.S

Abstract

The total graph of ring \(R \), denoted by \(T(\Gamma(R)) \) is a graph with all elements of \(R \) as vertices, and two distinct vertices \(x, y \in R \), are adjacent if and only if \(x + y \in Z(R) \), where \(Z(R) \) is the set of zero-divisors of \(R \). The induced subgraph of \(T(\Gamma(R)) \) with vertices on the regular elements \(\text{Reg}(R) \) denoted by \(\text{Reg}(\Gamma(R)) \) be a regular graf of ring \(R \), and the other induced subgraph of \(T(\Gamma(R)) \) with vertices on the set of zero-divisor elements \(Z(R) \) denoted by \(Z(\Gamma(R)) \). Ring used in this research is ring of integers modulo \(n \), denoted by \(\mathbb{Z}_n \). This research show that the partition dimension of a total graph, regular graph, and the induced subgraph with vertices on the set of zero-divisor elements are related to ring characteristic, and the set of zero-divisor that compose a graph. And also obtain relation between the partition dimension of a total graph with the partition dimension of a regular graph that composed of a commutative ring.

Key-words: The Total Graph, Regular Graph, Partition Dimension