REDESIGN OFFTOLL ROAD KERTOSONO – MOJOKERTO (SECTION I) ACCESS BANDAR USING FLEXIBLE PAVEMENT

Student Name 1 : Muhammad Ainur Rafiq
NRP : 3109.030.088
Student Name 2 : Akhmad Abdu Jadidi
NRP : 3109.030.098
Department : Diploma III Civil Engineering
FTSP ITS
Adviser : Ir. Chomaedhi, CES.Geo
NIP : 19550319 198403 1 001

Abstrak

The highway (toll) Kertosono-Mojokerto built for the purpose of an alternative way to solve the traffic volume is increasing every year. In addition traffic activity is dominated by large vehicles to reckon is the main arterial road link between the city, for it is in development using a rigid pavement to support it. In this discussion tries to provide an alternative structure that was rigid pavement planned to flexible pavement.

In the Redesign Highway Kertosono-Mojokerto (Section I) Access Bandar Using flexible pavement uses such theories based on Tata Cara Perencanaan Geometrik Jalan Antar Kota, Road Capacity Analysis based on Manual Kapasitas Jalan Indonesia (MKJI) 1997, Pavement Thickness planning to use Perhitungan Desain Perkerasan Lentur Pt T-01-2002-B with reference ASSTHO 1993, the drainage plan based on Planning Procedures for Surface Drainage Road SNI 03-3424-1994, stability control barrow reference by Soil Mechanics Volume 2 (the principles of geotechnical engineering) Braja M. Das and Budget Plan
base on Main Unit Price Work (HSPK) Jombang district in 2012.

From the calculation for the Highway Replanning Kertosono-Mojokerto (Section I) Access Bandar using Flexible Pavement with 4/2D type of road that has a width of road 14 meter. Use geometric arch circle full circle and spiral circle spiral have a flat road alignment that does not require geometric changes because already qualified. Construction for the 15-year pavement design life. The first phase of 10 years acquired the surface layer LASTON 15 cm, top layer of the foundation (base course) 22.5 cm, and bottom layer of foundation (Sub Base Course) 28 cm. And the second phase acquired layer (ACWC) 6 cm. While drainage using the trapezium shape with a width (b) 1.4 m and height of the wet section (d) = 0.44 m, surveillance Height (w) 0.5 m for slope stability barrow 1.34 points with a safety factor Fs 1:2 slope is safe is safe. Budget plans are required for the redesign of the highway re Kertosono-Mojokerto (section I) Bandar access using flexible pavement is Rp 70,583,394,352.00 (seventy billion five hundred eighty-three million three hundred ninety-four thousand three hundred fifty-two rupiah).

Keywords: access Bandar and flexible pavement