ABSTRACT

Oprit is the access link between the bridge with the existing road. Elevation of the existing approach road is lower when compared with the elevation of the bridge. In some cases there are circumstances where there is damage to the bridge oprit. Among the decrease in elevation that causes the broken plate oprit stampede on a bridge.

In order to serve the construction oprit traffic flow in accordance with the design life, we need to hold good pavement design, because with good planning pavement pavement construction is expected to be able to bear the burden of passing vehicles and spread the burden kelapisan-layer underneath and without causing damage which means that the road construction itself. Thus will provide convenience to road users during the service road / life plan. Given the above matter is very important it is necessary to design an appropriate type of pavement to oprit Krian Interchange. There are two types of pavement construction which we commonly know today; Construction Flexural pavement (flexible pavement) and the construction of rigid pavement (rigid pavement).

Pavement design used in the project using rigid pavement (rigid pavement) and on the grounds that the writing of this final
pavement design is different, that is flexible pavements (flexible pavement). For the construction itself oprit using heap construction. Which will be discussed in this final task is the volume of work required in the planning of flexible pavement thickness (flexible pavement) and construction of embankment, coupled with improvements on the land base. Oprit used as study material in this Final is oprit Krian Interchange project Surabaya-Mojokerto toll road (sta. 0 +675 s / d 0 +875).

Pavement construction used in this Final was the construction of flexible pavement, for flexible pavement design life of 10 years to obtain thickness of 20 cm-thick surface layer (AC), foundation layer of thickness 20 cm (class A crushed stone) and 20 cm base course (sand grade A). For soil improvement are basically used a combination of preloading and Prefabricated Vertical Drain (PVD) for a shorter time of settlement could be to achieve a specified degree of consolidation. And also as an alternative to soil reinforcement geotextile heap, to keep the bearing capacity of piles increased and more stable.

PVD is used in a type of PVD "Nylex FLODRAIN" with specifications Width: 100 mm and a thickness: 5 mm. Installation pattern used triangular pattern with a distance of 0.8 m. While the geotextile using stabilenka product 800/100. Geotextile installed sejarak 25 cm by 2 layers.

Keywords: oprit Krian Interchange, flexible pavement, embankment, preloading, PVD, geotextile.