SYNTHESIS OF MAGNETIC NANOPARTICLES USING ELECTROCHEMICAL METHOD

Name / NRP: Wahyu Raharjo (2304 100 083)
Endik Sentosa (2304 100 131)
Department: Chemical Engineering FTI - ITS
Advisor: Dr. Ir. Heru Setyawan, M. Eng

ABSTRACT

The main objectives of this research are to synthesize of magnetic nanoparticles using electrochemical method and to evaluate the effect of operating conditions on particles characteristics.

The anode was prepared by electroplating iron plate FeSO₄ solution with current density of 0.167 A/dm² for 6 hours. Then, the electroplated was functioned as anode in the next experiment that was used to produce Fe₃O₄ particles. Using deionized water as an electrolyte, electrolysis process for synthesizing of Fe₃O₄ was performed for 12 hours. To get the best result, experiments were performed with using various parameters such as temperature, pH, and current density. Particle produced that were dispersed in the solution were then separated and dried. The dried particles were characterized by X-ray Diffraction and Scanning Electron Microscopy. In these experiments, Overpotential was also measured, to know the effect of electric current on the electrode reaction occurred at the interface.

Electrochemical method with simple route can produce Fe₃O₄ particles although there was a little formation impurities such as FeOOH and tend to form agglomerate. From the result of XRD and SEM analysis at
those variables, showed that the best result of Fe₃O₄ particles were obtained at pH 7, temperature of 30 °C and under current density of 70 μA/cm².