Front Office
Institut Teknologi Sepuluh Nopember Surabaya

Kampus ITS Sukolilo - Surabaya 60111

Phone : 031-5921733 , 5923623
Fax : 031-5937774
E-mail :
Website :

Support (Customer Service) :


Have a problem with your access?
Please, contact our technical support below:

Davi Wahyuni

Tondo Indra Nyata

Anis Wulandari

Ansi Aflacha

ITS » Undergraduate Theses » Teknik Informatika
Posted by jono at 01/07/2009 10:08:16  •  7914 Views


Author :
Wicaksono, Bayu 


Image denoising pada dasarnya merupakan proses untuk mereduksi noise semaksimal mungkin pada suatu citra terdegradasi. Terdapat banyak metode dalam image denoising. Kebanyakan penelitian sebelumnya bekerja pada model additive gaussian noise. Selanjutnya akan dikembangkan suatu algoritma denoising yang mampu mereduksi noise tersebut sebaik mungkin. Dalam Tugas Akhir ini metode Fractional-Order Anisotropic Diffusion digunakan untuk menghilangkan noise tersebut. Persamaan ini merupakan persamaan Euler-Lagrange dari fungsi biaya yang merupakan fungsi peningkat dari suatu nilai mutlak fractional derivative fungsi intensitas citra. Digunakan Discrete Fourier Transform untuk mengimplementasikan algoritma dan memberikan sebuah skema perulangan pada domain frekuensi. Kemudian untuk mengatasi permasalahan yang timbul akibat lompatan diskontinu dari inputan tepi citra periodik maka digunakanlah algoritma folded yakni dengan memperluas tepi citra secara simetris. Akhirnya ditampilkan bermacam hasil numerik dari proses menghilangkan noise citra. Percobaan menunjukkan bahwa Fractional-Order Anisoptropic Diffusion menghasilkan efek visual yang baik dan nilai SNR yang lebih baik.


The basic definition of image denoising is a process for removing noise from the images corrupted. There are a lot of methods to deal with image denoising. Many recent researches work based on additive gaussian noise model. Further we will develop a new denoising algorithm which will reduce that noise as well. In this research fractional-order anisotropic diffusion metode is used for noise removal. These equations are EulerLagrange equations of a cost functional which is an increasing function of the absolute value of the fractional derivative of the image intensity function. We use the Discrete Fourier Transform to implement the numerical algorithm and give an iterative scheme in the frequency domain. Then to overcome the problem from jump discontinuities edges of the periodic image input we use a folded algorithm by extending the image symmetrically about its borders. Finally we list various numerical results on denoising real images. Experiments show that the proposed fractional-order anisotropic diffusion equations yield good visual effects and better signal-to-noise ratio.

KeywordsAanisotropic diffusion, image smoothing, fractional-order partial differential equation, fractional-order difference, image denoising.
Subject:  Image processing
  1. Rully Soelaiman,S.Kom.,M.Kom. Mediana Aryuni,S.Kom.,M.Kom.
Date Create: 01/07/2008
Type: Text
Format: pdf
Language: Indonesian
Identifier: ITS-Undergraduate-3100008032851
Collection ID: 3100008032851
Call Number: RSIf 006.42 Wic i

DEPARTMENT OF INFORMATICS Faculty Of Information Technology,RSIf 006.42 Wic i,2008

ITS Communication Only

Copyright @2008 by ITS Library. This publication is protected by copyright and permission should be obtained from the ITS Library prior to any prohibited reproduction, storage in a retrievel system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to ITS Library

[ Download - Summary ]


 Similar Document...


To facilitate the activation process, please fill out the member application form correctly and completely

Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently


Bagaimana pendapat Anda tentang layanan repository kami ?

Bagus Sekali

You are connected from
using CCBot/2.0 (

Copyright © ITS Library 2006 - 2021 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan